Ligand Binding and Activation of PPARγ by Firemaster® 550: Effects on Adipogenesis and Osteogenesis in Vitro
نویسندگان
چکیده
BACKGROUND The use of alternative flame retardants has increased since the phase out of pentabromodiphenyl ethers (pentaBDEs). One alternative, Firemaster® 550 (FM550), induces obesity in rats. Triphenyl phosphate (TPP), a component of FM550, has a structure similar to that of organotins, which are obesogenic in rodents. OBJECTIVES We tested the hypothesis that components of FM550 are biologically active peroxisome proliferator-activated receptor γ (PPARγ) ligands and estimated indoor exposure to TPP. METHODS FM550 and its components were assessed for ligand binding to and activation of human PPARγ. Solvent mapping was used to model TPP in the PPARγ binding site. Adipocyte and osteoblast differentiation were assessed in bone marrow multipotent mesenchymal stromal cell models. We estimated exposure of children to TPP using a screening-level indoor exposure model and house dust concentrations determined previously. RESULTS FM550 bound human PPARγ, and binding appeared to be driven primarily by TPP. Solvent mapping revealed that TPP interacted with binding hot spots within the PPARγ ligand binding domain. FM550 and its organophosphate components increased human PPARγ1 transcriptional activity in a Cos7 reporter assay and induced lipid accumulation and perilipin protein expression in BMS2 cells. FM550 and TPP diverted osteogenic differentiation toward adipogenesis in primary mouse bone marrow cultures. Our estimates suggest that dust ingestion is the major route of exposure of children to TPP. CONCLUSIONS Our findings suggest that FM550 components bind and activate PPARγ. In addition, in vitro exposure initiated adipocyte differentiation and antagonized osteogenesis. TPP likely is a major contributor to these biological actions. Given that TPP is ubiquitous in house dust, further studies are warranted to investigate the health effects of FM550.
منابع مشابه
Firemaster® 550 and its components isopropylated triphenyl phosphate and triphenyl phosphate enhance adipogenesis and transcriptional activity of peroxisome proliferator activated receptor (Pparγ) on the adipocyte protein 2 (aP2) promoter
Firemaster® 550 (FM550) is a chemical mixture currently used as an additive flame retardant in commercial products, and is comprised of 2-ethylhexyl-2,3,4,5-tertrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), triphenyl phosphate (TPP), and isopropylated triphenyl phosphate (IPTP). Animal and in vitro studies suggest that FM550, TPP and IPTP may have adipogenic effects and m...
متن کاملS-nitrosylation and MSC-mediated body composition
Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that can differentiate into multiple mesodermal lineages including adipocytes, osteoblasts, chondrocytes and myocytes. Adult stem cell differentiation is controlled by activation of lineagespecific transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ) and Runx2, two key transcription factors that go...
متن کاملPharmacological Repression of PPARγ Promotes Osteogenesis
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is the master regulator of adipogenesis and the pharmacological target of the thiazolidinedione (TZD) class of insulin sensitizers. Activation of PPARγ by TZDs promotes adipogenesis at the expense of osteoblast formation, contributing to their associated adverse effects on bone. Recently, we reported the development o...
متن کاملSignaling Crosstalk between PPARγ and BMP2 in Mesenchymal Stem Cells
Recent studies have revealed that PPARγ's transactivation function is regulated by extracellular signals. In particular, cytokines and Wnt family proteins suppress the ligand-inducible transactivation function of PPARγ and attenuate adipogenesis/osteoblastogenesis switching in mesenchymal stem cells (MSCs). For example, Wnt5a suppresses PPARγ transcriptional activity through the NLK/SETDB1/CHD7...
متن کاملIdentification of a novel selective PPARγ ligand with a unique binding mode and improved therapeutic profile in vitro
Thiazolidinediones (TZD) function as potent anti-diabetic drugs through their direct action on the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), but their therapeutic benefits are compromised by severe side effects. To address this concern, here we developed a potent "hit" compound, VSP-51, which is a novel selective PPARγ-modulating ligand with improved therapeutic pro...
متن کامل